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Abstract

The quadratic knapsack problem (QKP) is a well-known combinatorial optimization
problem with numerous applications. Given its NP-hard nature, finding optimal so-
lutions or even high quality suboptimal solutions to QKP in the general case is a
highly challenging task. In this paper, we propose an iterated “hyperplane explo-
ration” approach (IHEA) to solve QKP approximately. Instead of considering the
whole solution space, the proposed approach adopts the idea of searching over a set
of hyperplanes defined by a cardinality constraint to delimit the search to promising
areas of the solution space. To explore these hyperplanes efficiently, IHEA employs
a variable fixing strategy to reduce each hyperplane-constrained sub-problem and
then applies a dedicated tabu search procedure to locate high quality solutions
within the reduced solution space. Extensive experimental studies over three sets
of 220 QKP instances indicate that IHEA competes very favorably with the state-
of-the-art algorithms both in terms of solution quality and computing efficiency.
We provide additional information to gain insight into the key components of the
proposed approach.

Keywords: Quadratic Knapsack problem; Hyperplane exploration; Tabu search;
Variable fixing; Heuristics.

* Corresponding author.
Email addresses: yuning@info.univ-angers.fr (Yuning Chen),
hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 12 October 2016



1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 Introduction

The quadratic knapsack problem (QKP) [14] can be informally described as
follows. We are given a capacity-constrained knapsack and a set of candidate
objects (or items). Each object has a positive weight, and if selected, generates
an object profit and a pairwise profit with any other selected object. The
purpose of QKP is to select a subset of objects to fill the knapsack so as to
maximize the overall profit while the total weight of the selected objects does
not exceed the knapsack capacity.

Formally, let ¢ be the knapsack capacity and N = {1,2,...,n} the set of
objects. Let p;; be the profit of object i (i € N), w; be its weight. For each
pair of objects ¢ and j (1 < ¢ # j < n), p;; denotes the pairwise profit
which is added to the total profit only when both objects are selected. Let x;
(1 <i < n) be the decision variables such that z; = 1 if object i is selected,
xr; = 0 otherwise. Then QKP can be formulated as follows:

Maximize f(z) =Y pijzx; (1)
i=1 j=i
subject to:
> wz; <e (2)
=1
x €{0,1}" (3)

QKP can be reduced to the classical knapsack problem (KP) by restricting the
pairwise profit p;; to 0 for all 1 < i # j < n and thus generalizes KP. From
a graph-theoretic view of point, QKP is also a generalization of the Clique
problem [6,28]. From the perspective of computational complexity, QKP is
NP-hard in the strong sense [6]. It is also tightly related to other challenging
problems (e.g., edge-weighted maximum clique [9] and weighted maximum b-
clique [27]), and appears as a column generation sub-problem when solving
the graph partitioning problem [22]. In addition to its theoretical importance,
QKP is capable of formulating a number of practical applications [28] like
satellite site selection in telecommunications, locations of airports and railway
stations in logistics and compiler design.

QKP is well studied in the literature. Over the last decades, much effort
has been devoted to developing exact algorithms. Most of these algorithms
are based on the general branch-and-bound (B&B) framework. In this con-
text, many useful techniques were introduced including upper planes [14], La-
grangian relaxation [2,6], linearization [1,22], semidefinite programming [21].
The progress made on exact methods continually enlarged the class of QKP in-
stances that can be solved optimally. Among state-of-the-art exact approaches,



the B&B algorithm introduced in [29] is probably one of the most successful
methods which uses aggressive problem reduction techniques. Today’s state-
of-the-art exact methods are able to solve instances with up to 1500 variables.

On the other hand, to handle problems whose optimal solutions cannot be
reached by an exact algorithm, heuristics constitute a useful and complemen-
tary approach which aims to find sub-optimal solutions as good as possible to
large problems within a reasonable time. Existing QKP heuristic methods can
be classified into two categories, namely the randomized or stochastic heuris-
tics (which use random choices in their search components) and deterministic
heuristics (which, given a particular input, always produce the same output).
Representative randomized heuristic approaches for QKP include three greedy,
genetic and greedy genetic algorithms [23], a Mini-Swarm algorithm [35], and a
GRASP-tabu search algorithm [37]. Typical deterministic heuristic approaches
include an upper plane based heuristic [14], a greedy constructive heuristic [5],
a hybrid method [1] combining the greedy heuristic of [5] and the “fill-up and
exchange” procedure of [14], a linearization and exchange heuristic [20] and
a dynamic programming heuristic [12]. Different from the methods dealing
directly with QKP, the approach of [18] reformulates it as an unconstrained
binary quadratic problem (UBQP) and applies a tabu search algorithm de-
signed for UBQP to solve the reformulated model. Among the aforementioned
heuristics, the Mini-Swarm algorithm [35], the GRASP-tabu search algorithm
of [37] and the very recent dynamic programming heuristic of [12] are the
state-of-the-art approaches which are used as our references for performance
assessment and comparisons. Finally, several approximation algorithms can
be found in [24,36]. For a comprehensive survey of different solution methods
prior to 2007, the reader is referred to [28].

One observes that, compared to the research effort on exact algorithms which
has taken place for a long time, studies on heuristics for QKP are more recent
and less abundant. In this work, we are interested in solving large scale QKP
instances approximately and present an effective heuristic approach which
explores the idea of searching over promising hyperplanes. The proposed ap-
proach basically introduces an additional cardinality constraint to the original
model to prune regions of the search space where no optimal solution exists.
Such an idea proved to be very useful for designing effective heuristics for the
multidimensional knapsack problem [4,11,32]. Similar ideas were also explored
as a type of “generalized branching” [30] or “constraint branching” [13] within
the general B&B framework. In this work, we adapt for the first time the idea
of hyperplane exploration in the context of QKP. For this purpose, we address
two relevant issues which are critical to make our approach successful. First,
we need to identify the promising hyperplanes which are likely to contain high
quality solutions. Second, we want to search efficiently inside the identified hy-
perplanes since each hyperplane, though already much reduced relative to the
original model, may still contain a very large number of candidate solutions.
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Based on the above considerations, our proposed iterated “hyperplane explo-
ration” algorithm (IHEA) for QKP makes two original contributions.

From the algorithmic perspectives, we present for the first time a decom-
position approach for solving QKP. By introducing the cardinality con-
straint, IHEA divides the initial problem into several disjoint hyperplane-
constrained sub-problems and focuses its exploration within the most promis-
ing hyperplanes while discarding unpromising sub-problems. To further re-
duce the search space of each hyperplane-constrained problem, IHEA uses
specific rules to fix a large number of variables. To seek high quality so-
lutions within each reduced sub-problem, IHEA employs a dedicated tabu
search procedure which is able to tunnel through infeasible regions to facili-
tate transition between structurally different feasible solutions. An informed
perturbation strategy is also applied to establish a global form of diversifi-
cation and thereby to allow examining additional unexplored hyperplanes.

From the perspective of computational results, the proposed IHEA approach
displays very competitive performances on three groups of 220 benchmark
instances. Particularly, it is able to attain easily all the optimal solutions
with a 100% success rate for the first group of 100 instances with up to
300 objects. For the second group of 80 larger instances with 1000 to 2000
objects, IHEA provides improved best results for 6 instances (new lower
bounds) and attains the best known results for the remaining cases. We
also report results for a third group of very large instances with up to 6000
variables for which our approach achieves an average gap of less than 1.359%
between the best lower bound and the well-known upper bound U2, [6].

The rest of the paper is organized as follows. Section 2 describes the proposed
approach. Section 3 presents an extensive computational assessment in com-
parison with the state-of-the-art approaches and reports new results for a set
of very large-sized instances. Section 4 studies some key ingredients of the
proposed approach. Conclusions are drawn in Section 5.

2

Iterated “hyperplane exploration” algorithm for QKP

In this section, we present our iterated “hyperplane exploration” algorithm for
QKP. We begin with some useful notations and definitions, and then present
the main components of the proposed approach.



2.1 Basic notations and definitions

For a precise presentation of the IHEA algorithm, the following notations and
definitions are first introduced.

- Given a solution z € {0,1}" of a QKP instance P, I1(x) and I(x) denote
respectively the index set of variables receiving the value of 1 and 0 in x;

- Given a solution z € {0, 1}" of a QKP instance P, o(x) denotes the sum of
the values of all variables in z (i.e., o(z) = |[1(z)]|).

- Given two solutions € {0,1}" and z' € {0,1}", |z,2'| = Zn: |z; — x;|
j=1

denotes the Hamming distance between z and z.
- Function f,.(z) calculates a raw objective value of solution z € {0,1}" which
could be either feasible or infeasible with respect to the capacity constraint.

Definition 1 Given a solution = € {0,1}", the contribution of object i (i €
N) to the objective value with respect to x is given by:

C(i,x) = pi + Z Dij (4)
jEIl(x),j#i

Definition 2 Given a solution x € {0,1}", the density of object i (i € N)
with respect to x is given by:

D(i,x) = C(i,x) /w; (5)

Definition 3 A constrained QKP with a £ dimensional hyperplane constraint
is defined as:

max Z Z DijTil;
i=175=1
s.t.
CQKP[k] = ]Z wjir; < ¢ (6)
Z $j =k
j=1
x e {0,1}"

where Z x; = k is a hyperplane constraint which restricts the solution space

of QKP in the k£ dimensional hyperplane. Each feasible solution of problem
CQK P[k] has exactly k selected objects.
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Note that the notion of contribution C'(i,z) (Definition 1) is related to the
upper planes of [14] with two notable differences. First, C(i, ) involves both
a problem instance and a solution x while an upper plane only depends on
the problem instance (and is independent of any solution). Second, an upper
plane can be used to produce an upper bound for QKP while C'(i, z) does not
have such a utility. In our work, C(i,z) is used as an indicator to evaluate
the contribution of a particular item 7 to the total profit with respect to the
given solution z. This indicator allows us to dynamically identify the most
profitable item (according to the search state) to be included into the current
solution in order to maximize the total profit.

2.2 General idea of the “hyperplane exploration” algorithm

Let CQKP[k] (1 < k < n) be a constrained QKP (see Definition 3), it is
obvious that its solution space is a subspace of the original QKP. Therefore,
any feasible solution of the CQKP[k] (1 < k < n) is also a feasible solution
of the original QKP. Let QF be the feasible solution space of a QKP instance
such that:

OF ={z e {0,1}": 3 w;z; < c},
i=1

Then the feasible solution space of the constrained QKP with a k dimensional
hyperplane constraint (CQK P[k]) is given by:

Q[k] = {x e Qf: O’($) = /{Z}

QKP can be decomposed into n independent sub-problems (constrained QKPs):
CQKP[1],CQKP|2],...,CQK P[n]. These n sub-problems represent n disjoint

subspaces and the feasible solution space of QKP is the union of the solution

space of all its sub-problems, i.e., QF = Uj_, Q.

For QKP, if items are sorted in non-decreasing order according to their weight

w; (j € N), there must exist only one positive integer kyp simultaneously ver-
kyp+1
w; > c; similarly, if
i=1

J
items are sorted in non-increasing order according to their weight w; (j € N),

there must be only one positive integer k;p simultaneously verifying the fol-
k

k
ifying the following two constraints: 1) szB w; < ¢, 2)
5=1

krp
lowing two constraints: 1) > w; < ¢, 2)

7j=1
like [1,2,6,14,28,29], we assume non-negative entries in the profit matrix.
Notice that the existing QKP benchmark instances follow this assumption.
This leads to the following proposition.

L+l . .
>. w; > c. Following the literature
=1

Proposition 1. There must exist optimal solutions of QKP in hyperplanes



whose dimensions satisfy: krp < k < kyg.

Proof. Given a feasible solution z' € Qp,) (0 < ki < krg), and a feasible
solution z2 € Qo) (kg < ko < kyp, k1 < k2) which is obtained by including
another (ko —k;) unselected items to x!. Then z? and x' have k; selected items
in common. Since (ko —k1) > 1, and the contribution of any selected item in z?
is greater than or equal to 0, we have: f(z?) > f(z!). Consequently, there must
exist solutions in UziﬁLBQ[k] whose objective value is greater than or equal to
the objective value of the best solution in U];Ljle[k}. On the other hand,
kyp is the maximum number of items that can be contained in the knapsack
which means any solution in hyperplanes with a dimension greater than kyp
is infeasible. Therefore, no feasible solution in Up_, ., has an objective

value better than the objective value of the best solution in UZQLBQU@]- O

To make an effective search, we can focus on hyperplanes with a dimension
k within the interval [krp, kyp] and definitely discard other subspaces®. This
leads to a first (and large) reduction of the solution space from Uj_, €y to
Utvs - Q)

k=kpp" k]

However, the remaining search space UiiﬁLBQ[k] could still be too large to
be explored efficiently, especially when the gap between k;p and kyp is large
which is typically the general case (see Section 4.1). In order to further prune
some less-promising solution spaces, we explore the hypothesis that high qual-
ity solutions are located in a set of “promising” hyperplanes whose dimensions
are close to kyg. This hypothesis is confirmed by the experimental results pre-
sented in Section 3 and Section 4.1.

Based on the above hypothesis, the general idea of our IHEA approach is to
progressively and intensively explore a small number of “interesting” hyper-
planes whose dimensions are close to kyp so that a large subspace is effectively
pruned and the search effort is more focused. We carry out the hyperplane ex-
ploration in increasing order of their dimensions aiming to identify solutions
of increasing quality, and restart this process with a perturbation when no
improvement can be found. When the search seems to stagnate in one hyper-
plane, we seek better solutions in a higher dimensional hyperplane. To explore
a given hyperplane, additional variable fixing techniques are applied to fix a
number of variables so as to further shrink the subspace to be examined.

! In case an optimal solution exists in a hyperplane with a dimension k < k5, an
optimal solution z* identified in k € [krp, kyp] must include items with zero con-
tribution. In a practical situation where the (positive) weight of an item represents
a cost, an additional step is required to remove from x* the zero contribution items.
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2.8 General procedure of the “hyperplane exploration” algorithm

Our iterated “hyperplane exploration” approach is composed of three steps:

(1) Construct an initial high quality solution z° and use o(z") to deter-
mine the starting dimension of the “promising” hyperplanes; (o(2°) €
kB, kug] and o(x?) is close to kyp)

(2) For each hyperplane dimension k = o(2°),0(2°) + 1, o(2°) + 2..., execute
the following three steps:

a. Construct a constrained problem CQK P[k];

b. Identify some variables that are very likely to be part of the optimal
solution, fix these variables to 1 and remove them from CQK P[k],
leading to a reduced constrained problem CQK P'[k];

c. Run a hyperplane exploration algorithm to solve CQK P’ [k]. In our
case, we employ a search procedure based on tabu search [16] to find a
high quality solution within the current search space {2). If this solution
improves on the best feasible solution found in previous hyperplanes,
we move to the next hyperplane; otherwise we skip to step (3).

(3) Apply a perturbation to restart the search from a new starting point.
This perturbation (removing some specifically selected items) typically
displaces the search from the current hyperplane to a lower dimensional
hyperplane which introduces a possibility to visit more not-explored-yet
search spaces (e.g., hyperplanes with a dimension lower than o(z")) where
high quality solutions might exist (though with a small probability).

Algorithm 1 shows the pseudo-code of the IHEA algorithm for QKP, whose
components are detailed in the following sections. At the very beginning, an
initial solution is generated by a greedy randomized construction procedure
(Section 2.4.1) and is further improved by a descent procedure (Section 2.4.2).
Then, the initial dimension of the hyperplane as well as the first constrained
problem are determined from the initial solution. From this point, the al-
gorithm enters the “hyperplane exploration” phase which examines a series
of hyperplane constrained QKP problems. At each iteration of the ‘while’
loop, THEA first applies specific variable fixing rules to construct a reduced
constrained problem RCP(Vyigeq, CQK P[k],z") where Viizea contains a set
of fixed variables (Section 2.5). RCP(V}ized, CQK P[k],2") is then solved by
the tabu search procedure (Section 2.6). Each time a better solution Ty, 18
discovered (i.e., f(xfy) > f(x%)) by tabu search, IHEA updates the best solu-

tion found z” and moves on to solve another constrained problem in a higher
dimensional hyperplane. To do this, the algorithm increments k£ by one and
reinitializes 2" by randomly adding one unselected item to 2°. The ‘while’ loop
terminates when no improving solution can be found. The global best solution
is updated at the end of the ‘while’ loop. IHEA then makes some dedicated
changes (perturbations) to % , improves the perturbed solution (with the de-



scent procedure) to a local optimum, and use the local optimum to start a new
round of the “hyperplane exploration” procedure. The above whole procedure
continues until a maximum number of allowed iterations is reached.

Algorithm 1 Pseudo-code of the IHEA algorithm for QKP.

Input: P: an instance of the QK P; L: size of running list; rcl: max allowed size of

restricted candidate list; MaxIter: max number of iterations;
Output: the best solution z* found so far

2V <+ Greedy_Randomized_Construction(rcl)
20 « Descent(x°)

’ / .
x < 2% /* z represents the current solution */

Iter < 0 /* lteration counter */

2? < x' /* 2P records the best solution found in current iteration */

x* < 2 /* 2* records the global best solution */
repeat

SolutionImproved < true

k+ o(z)

Construct constrained problem CQK P|k]

/* “hyperplane exploration” phase */

while SolutionImproved do

Vtized < Determine_Fized_Variables(k, 1‘/)

I S
O PRPWNHR OO NI HAWN =

16: Construct reduced constrained problem RCP(Vfixed,CQKP[k:],x/)

17: Run TabuSearch_Engine(L, x , 2") to solve RCP(Viged, CQKP[]{}],.%,) and
keep a best solution m?‘k]

18: if f(a:[*k]) > f(a:b) then

19: 20— w’[kk]

20: k/% k+1

21: x <+ Randomly add one item to z*

22: Construct constrained problem CQK PIk]

23: else

24: SolutionImproved < false

25: end if

26:  end while

27: if f(z°) > f(z*) then

28: r* 2P

29:  endif

30:  /* Perturbation phase */

31: 2 « Perturbation(z®, Iter)
32: &'« Descent(z)

33 2l

34: Iter < Iter +1

35: until Iter > MaxIter

2.4 Initial solution

IHEA constructs an initial solution according to a greedy randomized con-
structive heuristic. In order to place the initial solution in a “good” hyperplane,
we additionally improve the constructed solution with a descent procedure. In
this section, we explain these two procedures.
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2.4.1 Greedy randomized construction procedure

Our greedy randomized construction procedure follows the spirit of the GRASP
approach [10] which has been investigated in [37] to solve QKP. Different
from [37] where the construction procedure is used as the main search al-
gorithm, our THEA algorithm uses this construction procedure to obtain an
initial solution.

Starting from a partial solution x where all items are set unselected initially,
the construction procedure iteratively and adaptively selects some items to be
included in z (i.e., the corresponding variables receive the value of 1) while
maintaining the solution feasibility. At each iteration, we randomly select one
unselected item from a restricted candidate list RC'L and add the item to the
partial solution.

Let R(z) = {i € Io(x) : wi + Xjer @) w; < c} be the set of unselected items
that can fit into the knapsack with respect to z. Let rcl be the maximum size of
the restricted candidate list. Then RCL contains min{rcl, |R(x)|} unselected
items which have the largest density values (Section 2.1) and do not violate
the capacity constraint when any of them is included to the current partial
solution x. Formally, Vi € RC'L, the following two conditions hold: 1) i € R(z),
2) D(i,z) > D(j,z) (V5 € Io(x)\RCL).

The items in RCL are ranked according to their density values and the 7"
(1 < r < |RCLJ|) ranked item is associated with a bias b, = 1/e". Thus,
the r* item is selected with a probability p(r) which is calculated as: p(r) =
b,/ Z'jif” b;. Once an item is selected and added to the partial solution z,
RCL is updated as well as the objective value of the partial solution. This
procedure repeats until RC'L becomes empty.

One notices that the initial solution constructed by this greedy randomized
procedure must be in a hyperplane whose dimension is not smaller than k5
since it is a tight packing plan that cannot include any more unselected item,
and not greater than kyp since it is a feasible solution. Also, this dimension
is experimentally proved to be close to kyp (see Section 4.1). The underlying
reason is that items with a small weight are biased towards being selected to
join the knapsack.

2.4.2 Descent procedure

Starting from a solution generated through the greedy randomized construc-
tion procedure, IHEA uses a descent procedure to reach a local optimum (The
descent procedure is also applied after a perturbation, see Section 2.7). This
descent procedure helps: 1) to generate a promising hyperplane which may
contain high quality solutions; 2) to improve the quality of the initial solution

10



which allows the hyperplane exploration to start from a high platform.

Our descent procedure jointly employs two different neighborhoods defined by
two basic move operators: ADD and SWAP.

- ADD(i): This move operator adds an unselected item ¢ (i € Io(x)) to a
given solution x. It can be considered as a special case of FLIP used in [37]
by restricting the flipped variables to those having the value of 0 in the given
solution. N4 denotes the neighborhood induced by the ADD operator, and
NT is a subset of N4 that contains only feasible neighbor solutions.

- SWAP(i,7): Given a solution x, SWAP(i,j) exchanges an unselected item
i (1 € Ip(x)) with a selected item j of z (5 € I(x)). This operator is
commonly used in the existing QKP approaches [1,37]. A SWAP operation
can be realized as two consecutive FLIP operations where one is to flip a
variable from 0 to 1 and the other is to flip another variable from 1 to 0.
N denotes the neighborhood induced by the SWAP operator, and NZ is a
subset of Ng that contains only feasible neighbor solutions.

The aim of the descent procedure is to attain a local optimum (as good as
possible) in both neighborhoods NI and NI starting from a solution z (either
obtained by the construction procedure or the perturbation procedure). To
this end, the algorithm iteratively explores N4 and NI in a token-ring way
Ni — NI — NE — NE... For each iteration, a feasible neighbor solution z’
is picked at random from the neighborhood under consideration and replaces
the incumbent solution z if 2’ is better than = (i.e., f(z') > f(z)).

It should be noted that our descent procedure is different from the “fill-up
and exchange” procedure of [14] which also relies on ADD and SWAP. Our
descent procedure examines neighbor solutions in random order and accepts
the first encountered improving neighbor while the “fill-up and exchange”
procedure checks neighbor solutions in a deterministic way. Moreover, our
descent procedure explores N% and N in a token-ring way while the “fill-up
and exchange” process explores these neighborhoods in a sequential way.

2.5 Variable fixing and problem reduction

By adding a hyperplane constraint o(z) = k to QKP, the induced con-
strained problem CQK P[k| removes a large part of the solution space (of
order O(2" — C¥)) from the original QKP. However, the solution space of
the constrained problem CQK P[k] might still be too large to be efficiently
searched by an algorithm. Indeed, as we employ a search algorithm which ex-
plores both feasible and infeasible solutions (see Section 2.6), CQK P[k| has
a search space of 2¥ where k, though smaller than n, could still be large. To
further reduce the search space to explore, we fix some variables in CQK P[k].
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Recall that in Algorithm 1, the starting solution " of TabuSearch_Engine for
solving each constrained problem CQK P[k] is modified from the best solution
2® such that 2" and 2® are either the same in the first hyperplane (see Line
7 of Algorithm 1) or different only in one variable (see Line 21 of Algorithm
1). For each CQK P[k], based on ', our variable fixing step tries to identify a
set of variables V};zeq that are highly likely to be part of the optimal solution
and fixes them to the value of 1. We then remove these variables (these vari-
ables are said fixed) from CQK P[k], leading to a reduced constrained problem
RCP<Vfixed7 CQKP[k]7 .1’/).

In order to limit the risk of fixing wrong variables, we follow the general idea
of identifying a set of “strongly determined” variables [15]. For this purpose,
we make use of information from the density value associated with each item.
According to the definition presented in Section 2.1, for those selected items
in a given solution, the density of an item represents its contribution (profit)
per weight unit. Thus, the density value is a good indicator of the importance
of a selected item. Given a QKP solution ' € {0, 1}", our variable fixing rules
can be summarized as a three-step method:

(1) For each variable z; such that i € I,(z'), calculate its density value
D(i,z);

(2) Sort all variables in I;(z') in non-increasing order according to their
density values D(i,z") (i € I (z')), leading to a sorted index set SI;(z');

(3) Extract the first ny variables in SI;(z') to form the fixed variable set
Viizea (g is the number of fixed variables, i.e., ny = |V}izeq|). Fix the
variables in V}izeq with the value of 1, leading to a reduced constrained
problem RO P(Vizea, CQK Pk], ") whose variable set is (I1(2")\Vizea) U
Io(l'/).

In the last step, ny is determined using the following empirical formula:

ny = kg +maz{(|I;(z)| — krg) * (1 — 1/(0.008 % n)), 0} (7)

where krp is the minimum number of items that can be contained in the
knapsack. Typically, |I;(z")| is larger than krg. It is easy to understand that
a solution with only k5 selected items is unlikely to be a good solution since
the packing plan is not tight enough. The number of items that can be fixed
(nys) is specified by formula (7).

Formula (7) was identified in the following manner. We first obtained optimal
solutions for a set of instances of different sizes (ranging from n = 100 to 500)
with the exact solver of [6]. We also obtained a set of near-optimal solutions
provided by our solution initialization procedure of Section 2.4. We sorted
the selected items of the near-optimal solutions according to their density

12



values, and then compared them to the optimal solutions. Finally, we arrived
at the following observations: 1) the number of items that can be fixed (ny)
is somewhere between kzp and |I)(z')|; 2) the number of items that can be
fixed enlarges as the size of the instance increases. The design of formula (7)
basically integrates these observations.

Note that different strategies for temporary or definitive variable fixing were
explored in [2] for QKP and studied in other contexts like 0-1 mixed integer
programming, integer linear programming and binary quadratic programming
[7,33,34]. Moreover, the notion of item density was previously used in other
construction procedures [5,37]. For instance, from the set of given items, the
greedy construction procedure in [5] drops iteratively the “lightest” items one
by one until the remaining items form a feasible solution (i.e., the knapsack
constraint becomes satisfied). Furthermore, unlike our procedure where the
density of each item is calculated only once, the procedure of [5] updates,
after each iteration, the density value of each remaining item.

2.6 Hyperplane exploration with tabu search

The tabu search procedure (T'abuSearch_Engine) described in this section is
designed to solve the reduced constrained problem RCP(V}igzeq, CQK PK], a:/),
i.e., identify feasible solutions that are better than z* which is the current best
solution found in the current course of the “hyperplane exploration” proce-
dure. The key ingredients of T'abuSearch_Engine are described as follows.

e Neighborhood: It is known that allowing a controlled exploration of in-
feasible solutions may enhance the performance of a heuristic search al-
gorithm, by facilitating transitions between structurally different feasible
solutions [17]. Following this idea, we employ the Ng neighborhood (de-
fined in Section 2.4.2) which contains both feasible and infeasible neighbor
solutions. In order to explore effectively the search space of a given hy-
perplane, we restrict our tabu search procedure to visit solutions that are
considered better than the best feasible solution found so far, leading to
a restricted SWAP neighborhood NZ. Precisely, given the objective value
of the current best feasible solution with objective value f,,;,, the neigh-
borhood N (z) of a solution z (either feasible or infeasible) is defined as:
NE(z) = {2" € Ng(x) : fo(x') > fomin} where f, is the raw objective value.

e Tabu list management: We use the reverse elimination method (REM)
introduced in [16] for our tabu list management. REM defines an exact tabu
mechanism which prevents any visited solution from being revisited. REM
uses a running list to store the attributes of all implemented moves. One can
trace back the running list to identify the tabu status of a move by making
use of another list called residual cancellation sequence (RCS) where an
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attribute is either added if it is not yet in the RCS or removed from RCS
otherwise. Interested readers are referred to [8,16,32] for more details on this
method. For the SWAP operator used by TabuSearch_Engine, when there
are only two attributes left in RC'S (i.e., |[RCS| = 2), the move composed
of these two attributes is declared tabu in the next iteration. The procedure
of updating the tabu status is described in Algorithm 2.
e Evaluation function: The evaluation function used by T'abuSearch_Engine

considers two factors to assess a solution x: 1) raw objective value f,.(x), 2)

n
capacity violation v.(z) = ¢— Y wjz;. A transition is made from the current
j=1

solution z to a neighbor solution z* € NF(z) if V2" € (N&(z)\{z'}), 2’ veri-
fies one of the following two conditions: 1) ve(z') < ve(z"), 2) ve(z') = ve(2")
and f.(z) > f.(z").

Algorithm 2 presents the pseudo-code of TabuSearch_Engine which takes
three elements as its input: 1) the max size of the running list which serves as
the termination condition; 2) an initial solution (feasible or unfeasible) which
serves as its starting point; 3) a reference feasible solution 2™/ which restricts
the search to visit solutions whose objective value is better than that of z"¢/.
At each iteration, the algorithm identifies the best non-tabu SWAP move
relative to the above evaluation function, and applies the move to obtain a
new solution. Each time a feasible solution is discovered (i.e., v, = 0), the
running list is reset and f,,;, is updated. TabuSearch_Engine terminates if
one of the following two conditions is verified: 1) all moves are tabu, i.e.,
Umin = 00; 2) the running list is full, i.e., erl > L.

Note that tabu search was also used in [37] to enhance a GRASP procedure.
However, these two studies are quite different. First, our general IHEA ap-
proach focuses on decomposing the initial solution space into a set of hyperplane-
constrained and reduced solution spaces while GRASP+tabu of [37] explores
the original solution space. Second, our tabu search procedure is dedicated to
effectively explore the solution space of a hyperplane-constrained sub-problem.
As such, its design (in terms of neighborhood, tabu list management and eval-
uation function) is different from GRASP+tabu. Third, our tabu search ex-
plores both feasible and infeasible solutions while GRASP-+tabu only visits
feasible solutions. Compared to the approach of [18], their tabu search al-
gorithm was dedicated to the unconstrained binary quadratic problem and
operates with the “one-flip” move operator (called “shift” in [37]) which adds
or removes an item (SWAP was not used).
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Algorithm 2 Pseudo-code of T'abuSearch_Engine

1:

42:

Input: L: max size of running list; z: an initial solution; z"¢/: a reference
feasible solution
Output: the best feasible solution found so far x*

|RL| <— L /* Initialize the size of running list to L */

fimin < f(@"T) /* fiin records the objective value of the current best feasible
solution */

x* < 2" /* 2* records the best feasible solution found so far */
erl <0
T ™
while v, # coVerl < L do
(Umina fma:r:) — (OO, _OO)
for each i € Iy(z) do
for each j € I1(z) do
if tabuli][j] # iter then
(:Ui:'xj) < (17 0)
ti;{l(fr(x) > fmzn)/\((vc(ﬁ) < Umin)\/((vc(x) = Umin)/\(fr(fE) > fma:c)))
en
(71*7]*) — (Za])v (Umina fmax) — (Uc(x)7fr(x))
end if
end if
end for
end for
if vy # 00 then
(ZEZ‘*,Z']‘*) «— (17 O)

erl < 0; fmin < fr(x); 2* <z
else

iter <— iter + 1; RL <+~ RLU{i*} U {j*}; erl < erl +2
/*UPDATE TABU STATUS*/
i< (erl —1)
while 7 > 0 do

j < RLI[i]

if j € RCS then

RCS «+ RCS\{j}

else
RCS < RCS U({j}

end if
if |RCS| =2 then
tabu[RC'S|0]][RCS[1]]  iter; tabu[ RC'S[1]][RCS[0]] < iter
end if
1+ 17—1
end while
end if
end if
end while

2.7 Perturbation

To establish a global form of diversification and reinforce the capacity of the
algorithm to visit unexplored “promising” hyperplanes, we employ a perturba-
tion strategy to restart the search from a new starting point (usually in a lower
dimensional hyperplane w.r.t. the current hyperplane). A perturbation is ap-
plied when the hyperplane-based search stagnates, i.e., the local optimum xf‘k]
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of the current constrained problem C'QK P|[k] does not improve the best solu-
tion found in the current hyperplane exploration phase 2. This best solution
2® could be either the local optimum obtained by the initializing construction
procedure (or perturbation procedure) followed by the descent procedure, or
the local optimum of the last constrained problem CQKP[k — 1] (z},_y)).

Given a feasible solution x, the general idea of our perturbation strategy is to
remove a small number (say s, s > 0) of items which are chosen from ¢ (s <
t < (I1(x) —ny)) selected items with the lowest densities and then replace the
removed items with some other unselected items. To do this, we first sort all the
selected items in x according to the ascending order of their densities D(x,1)
(1 € I(z)). We then remove s items which are selected from the first ¢ sorted
items and re-construct the solution using the greedy randomized construction
procedure of Section 2.4.1, leading to a perturbed solution. This perturbed
solution is further improved by using the descent procedure of Section 2.4.2.
The calibration of the parameters ¢t and s is discussed in Section 3.2.

To improve the diversification effect of the perturbation, we employ a short-
term memory to prevent recently removed items from being added back to
the solution in subsequent iterations. Each time an item is removed from the
solution, it is not allowed to be inserted to the solution in next rand(1,s)
iterations where rand(1, s) takes a random value between 1 and s.

2.8 Implementation improvement

A fast incremental evaluation technique was introduced in [14] to determine
rapidly the effect of the ADD and SWAP moves for their “fill-up and ex-
change” procedure which explores only feasible regions. We slightly extend
this technique to make it applicable to evaluate the raw objective values of
the new solutions encountered in either feasible or infeasible solution spaces.
In addition, we also introduce a fast feasibility checking technique.

Given a solution x, which may be either feasible or infeasible, flipping a vari-
able z; produces a new solution = whose raw objective value can be con-
veniently calculated in O(1) time as: f.(x') = f(z) + (1 — 2% ;) * C(i, ),
where C(i,z) is the contribution of variable z;. Therefore, any solution gen-
erated by a move operator which can be realized with constant times of flip
operations can be evaluated in O(1) time as well. This is the case for the
ADD and SWAP operators which can be realized with one and two flip oper-
ations respectively. Using this fast evaluation technique leads to a significant
acceleration compared to a complete evaluation which requires O(n?) time.

To achieve this saving, we maintain a memory structure A to store the current
contribution value of each variable A; (corresponding to C(i,z) for a given
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solution z) which is updated each time a flip operation is performed. Given an
empty solution where all variables are assigned the value of 0, the contribution
of flipping any variable is initialized to its profit value, i.e., A; < p;,;i € N.
Thereafter, once a move is performed, the contribution value of each variable
after flipping a variable x; can be efficiently updated as follows:

Ay, if j=i
Aj=A;+qj, if ;=1 and je N\{i} (8)

The total time of updating the structure A is bounded by O(n). Using this
memory structure, a new solution z transitioned from the current solution z
by adding an unselected item x; can be evaluated using the following equation:

fr(@) = frlz) + A (9)

Similarly, a new solution " produced by swapping items z; (x; = 1) and z;
(z; = 0) of the current solution z can be evaluated by the following equation:

frl@) = frl@) = A+ A — py (10)

In addition to A, we maintain another memory structure which stores the sum
of weights of all the selected items in the current solution, which is updated
accordingly after an operation is performed. This memory structure allows the
capacity constraint checking to be achieved with a time complexity of O(1).

3 Computational Experiments

This section is dedicated to a computational assessment of the proposed algo-
rithm and comparisons with the state-of-the-art QKP approaches.

3.1 Ezxperimental protocol

To evaluate the efficiency of the proposed algorithm, we carry out extensive
experiments on a set of 220 instances ranging from small to very large sizes.
These instances can be divided into three groups:
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e Group I. This group is composed of 100 small and medium sized benchmark
instances generated by Billionnet and Soutif [2]. These instances, generated
in the same way as in [5,6,14, 20|, are very popular and used to test many
QKP algorithms. These instances are characterized by their number of ob-
jects n € {100,200, 300}, density d € {25%, 50%, 75%, 100%} (i.e., number
of non-zero coefficients of the objective function divided by n(n+1)/2). Each
(n,d) combination involves 10 different instances distinguished by their la-
bels except for (300,75%) and (300,100%) where instances are missing. Op-
timal solutions are known for these instances. The instance data files can
be downloaded at http://cedric.cnam.fr/~soutif/QKP/QKP.html.

e Group II. The second group includes 80 large-sized benchmark instances
which are recently generated by Yang et al. [37]. These instances have a num-
ber of objects from 1000 to 2000, a value of density from 25% to 100%. Due
to their large size, optimal solutions are still unknown for these instances.
The instance data files are available at http://www.info.univ-angers.
fr/pub/hao/QKP.html

e Group III. This group is composed of 40 new instances of very large sizes
that we propose for this study. They are characterized by their number of
objects n € {5000,6000} and density d € {25%, 50%, 75%, 100%}. For each
(n, d) combination, 5 instances were proposed. These instances are available
from the authors of this work (they are too large to be put on our web).

The above three groups of instances were all generated using the same gener-
ator that was very popular and commonly used in QKP literature [1,6,14,20].
The parameter settings for the generator are the same as well: the coefficients
pi; of the objective function are integers that are uniformly distributed in the
interval [0,100]; each weight w; is uniformly distributed in [1,50]; the capacity ¢
is randomly selected from [50,>°%_; w;]. However, to ensure the hardness of the
new instances of Group III, we have performed the following selection process.
For each instance, we attained the best objective value of ten feasible solu-
tions, each of which was built by randomly filling the knapsack. A gap between
the objective value of the random solution and the best objective value from
our IHEA algorithm was then calculated. We denote this gap as randGap.
For each (n,d) combination, we generated 10 instances, 5 of which having
the largest randGaps were selected to join Group III. The average randGap
(in percentage) of all instances in Group III is 69.36% which indicates that a
randomly generated solution is rather poor. From this perspective, finding a
high quality solution for these instances is a non-trivial task.

Our THEA algorithm was coded in C++ ? and compiled by GNU gcc 4.1.2
with the -O3’ option. The experiments were conducted on a computer with
an AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Ubuntu

2 Our best solution certificates are available at: http://www.info.univ-angers.
fr/pub/hao/QKPResults.zip.
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Table 1
Parameter settings of the IHEA algorithm

Para. Description Value Section
rcl max allowed size of restricted candidate list 20 2.4.1

L size of the running list 300 2.6

t size of the least-density items for perturbation — min{10,(I1(x) —ns)} 2.7

s number of items to be perturbed min{3,t} 2.7
MazIter max number of iterations V/n+65 2.3

12.04. When running the DIMACS machine benchmark program dfmax.c on
graphs r300.5, r400.5 and r500.5 (available at ftp://dimacs.rutgers.edu/
pub/dsj/clique/) (compliled without optimization flag), the run time on our
machine is 0.40, 2.50 and 9.55 seconds respectively for these graphs.

3.2  Parameter calibration

Our THEA algorithm relies on five parameters (see Table 1). To calibrate these
parameters, we employed an automatic configuration method called Iterated
F-race (IFR) [3] which was implemented in the irace package [25]. For each
parameter to be tuned, IFR requires a range of values as input. Based on
preliminary experiments, we used the range of values as follows: rcl € [10, 30],
L € [100,400], p; € [5,20], and ps € [1,7]. p1 and py are two parameters
associated with ¢ and s, i.e., t = min{py, ([1(x) — ng)} and s = min{p,,t}.
We restricted the training set to 26 representative instances: one instance from
each (n,d) combination. To run IFR, we used the tuning budget of 3000 IHEA
runs, each run being given 50 iterations. Once the previous four parameters
are determined, the termination condition parameter MaxIter can be easily
tuned by taking into account the balance between quality and efficiency of
the ITHEA algorithm. The parameter values shown in Table 1 were used in all
experiments in the following sections unless otherwise mentioned.

3.8  Comparative results on small and medium instances of Group I

Our first experiment was performed on the benchmark instances of Group
[. These instances were first solved to optimality by the exact algorithm of
2], with hundreds or thousands of CPU seconds on a 300 MHz Pentium II
Processor. Several recent heuristic approaches are able to attain these optimal
solutions with much less computing efforts (typically a few seconds) [35,37].
To evaluate the performance of our IHEA algorithm, three leading heuristic
methods were considered for our comparison:

- A Mini-Swarm approach [35]. The experiments reported in [35] were per-
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Table 2
Scaling factors for the computers used in the reference algorithms. Our computer
(AMD Opteron 4184) serves as the basis.

Algorithm Reference  Processor type Frequency (GHz) Factor
THEA - AMD Opteron 4184 2.8 1.0
Min-Swarm (35] Pentium IV 3.06 1.09
GRASP+tabu  [37] Pentium 1.73 0.62

formed on a computer with a 3.06 GHz P4 processor.

- A recent Dynamic Programming heuristic approach [12]. Among all algo-
rithm variants studied in [12], the best performance was achieved by the
version using 73 /w; as the item ordering rule coupled with the “fill-up and
exchange” procedure proposed in [14]. This algorithm version, denoted as
DP+FE, was included for our comparative study. The results of DP+FE
in this study were obtained by running the source code (which was kindly
given to us by the authors of [12]) on our machine. Since DP+FE is a
deterministic heuristic algorithm, it was executed for a single run.

- A GRASP-tabu approach [37]. This approach includes two algorithm vari-
ants (GRASP and GRASP+tabu). We used the results of GRASP+tabu
for our comparative study since it dominates GRASP alone. The reported
results were obtained on a Pentium 1.73 GHz processor with 2 GB RAM.

It is not a straightforward task to make a fully fair comparative analysis
with the reference approaches due to the differences in computing hardware,
termination criterion, etc. This is particularly true for the computing times.
For this reason, we focus our study on the quality criterion of the solutions
found. Nevertheless, we include information on computing time for indicative
purposes. Following [26, 31|, we used the CPU frequency of our computer
(AMD Opteron 4184 2.8 GHz) as a basis to scale the times of the reference
algorithms reported in [35,37] (see Table 2 for the scaling factors).

Like the two reference randomized algorithms (Min-Swarm and GRASP+tabu),
we ran our IHEA algorithm 100 times to solve each problem instance. To show
a general picture and simplify the presentation, we divide the whole instance
set into 8 classes according to the (n, d) combination. Table 3 displays for each
instance class and for each randomized algorithm, the average value of three
indicators: 1) success rate (SR), i.e., the number of the trials over 100 runs
hitting the known optimal solution; 2) relative percentage deviation (RPD),
the average gap between the best lower bound (frg) and the best solution
value ( fpest) in percentage over 100 trials where the gap is calculated by ((frp
- frest)/ fre x 100); 3) the average CPU time in seconds for one trial (¢(s)).
Note that for the single-run deterministic algorithm (DP+FE), the average
values over multiple runs are not needed. For our IHEA algorithm, we also
report the average time when the algorithm first encounters the best solution
(tp(s)) over 100 trials. Since our proposed algorithm as well as the reference
algorithms can easily attain the optimal results for all the benchmark in-
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Table 3

Comparative results of IHEA with 3 state-of-the-art algorithms on the 100 bench-
mark instances of Group I [2]. The values in bold indicate the improved results of
IHEA.

INST. Min-Swarm [35] DP+FE [12] GRASP+tabu [37] THEA

SR(%) RPD t(s) SR(%) RPD  t(s) SR(%) RPD  t(s) SR(%) RPD t(s) t(s)
100-25 93.900 0.012 0.482 40.000 0.319 0.697  100.000 0.000 0.060  100.000 0.000 0.325 0.004
100-50 94.200 0.004 0.442 80.000 0.018 0.708 100.000 0.000 0.057 100.000 0.000 0.253 0.002
100_75 97.500 0.001 0.396  80.000 0.008 0.704  100.000 0.000 0.052  100.000 0.000 0.334 0.003
100100  100.000 0.000 0.224  77.777 0.005 0.657  100.000 0.000 0.048  100.000 0.000 0.248 0.002
200-25 90.300 0.009 1.559 60.000 0.056 7.341 100.000 0.000 0.286  100.000 0.000 0.714 0.029
200-50 92.400 0.001 1.967 50.000 0.009 8.239  99.900 9.4E-6 0.301  100.000 0.000 0.827 0.035
200-75 90.900 0.003 2.361 60.000 0.010 7.055  100.000 0.000 0.318  100.000 0.000 0.946 0.010
200-100 100.000 0.000 1.305 60.000 0.004 6.683  100.000 0.000 0.251 100.000 0.000 0.722 0.005
300252 - - - 33.333  0.061 28.341 99.667 0.001 0.735 100.000 0.000 1.122 0.018
300-50 - - - 50.000 0.003 31.324 100.000 0.000 0.763  100.000 0.000 1.156 0.015

1 Instance 100_.100_4 is not available and is not considered when we calculate the average value for the instance class 100_100.
2 Instance 300_25_3 is not available and is not considered when we calculate the average value for the instance class 300_25.

stances under consideration, these optimal results are not listed in the table
(see [2,35,37] for these optimal results). The results of the reference algorithms
are extracted from the corresponding papers [35,37] (the code of the reference
algorithms are not available).

From Table 3, we observe that our IHEA algorithm attains the known optimal
values with a successful rate of 100% for all these instances with an average
computing time of no more than 1.156 seconds. The average best solution
time t,(s) of IHEA is even more interesting since the maximum time is only
0.035 seconds (for 200_50). ITHEA outperforms the Min-Swarm approach in
the success rate and the relative percentage deviation by consuming typically
less CPU seconds. Meanwhile, IHEA dominates the deterministic DP+FE
algorithm in terms of both solution quality and computational efficiency for
all instance classes. Compared to GRASP+tabu which is one of the current
best performing heuristic algorithms, ITHEA remains very competitive since it
solves all these instances to optimality with a 100% success rate while there
are 2 instances for which GRASP+tabu is not able to achieve a success rate
of 100%. Another interesting feature of IHEA is that its average computing
time is approximately linear relative to the size of the instance which was not
observed for the reference algorithms.

3.4 Comparative results on large instances of Group I

In this section, we investigate the behavior of our algorithm on the second
group of 80 large instances (n = 1000 or 2000) with unknown optima. Like
GRASP+tabu of [37], our IHEA algorithm was executed 100 times for each in-
stance. As reference algorithms, we again used GRASP+tabu (which reported
the current best known lower bounds for these instances) and DP+FE. The
results of DP4+FE were obtained by executing a single run of its source code
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on our machine while the results of GRASP+tabu were extracted from [37].
Table 4 (for instances with 1000 objects) and Table 5 (for instances with 2000
objects) summarize the comparative results. The listed indicators include the
best lower bound discovered (column Best), the success rate (column SR) to
attain the best lower bound, the relative percentage deviation (column RPD)
and the average computing time for one trial (¢(s)). We also report the av-
erage best time over 100 trials for our IHEA algorithm (column ¢,(s)). The
best known results are indicated in italic and the new improved results are
highlighted in bold. In the last two rows, #Bests indicates the number of
italic and bold values, and Avg. denotes the average value for each column.

Table 4 and 5 disclose that our IHEA algorithm outperforms both GRASP+tabu
and DP+FE in terms of all indicators. Firstly, IHEA attains the best known
lower bounds or improves these lower bounds for all 80 instances. Specifically,
it discovers improved best lower bounds for 6 instances and attains the previ-
ous best known lower bounds for the remaining 74 instances. Secondly, the suc-
cess rate and relative percentage deviation achieved by IHEA are consistently
better than or equal to those achieved by the randomized GRASP+tabu. In
particular, IHEA performs better in these two indicators for 24 out of 80 cases
and is equal for the remaining 56 cases. GRASP+tabu has 24 cases for which
the success rate is under 100% while ITHEA has only 3 such cases. Moreover,
THEA is better both in its lowest success rate (95% vs. 6%) and in its aver-
age success rate (99.9% vs. 91.63%) compared to GRASP+tabu. Notice that
the success rate of IHEA can be further improved by simply extending the
max iteration parameter (Maxzlter). For example, when we set the Maxlter
to (v/n+130), IHEA achieves a 100% success rate for all these instances but
at the expense of more computing time. Thirdly, IHEA always needs much

less computing effort to achieve a similar or better performance compared to
GRASP-+tabu and DP+FE.

To solve instances with 1000 variables and 2000 variables respectively, IHEA
consumes an average computing time of 6.0 seconds and 22.73 seconds while
these values are 27.96 seconds and 329.65 seconds for GRASP+tabu, 2917.70
seconds and 51695.75 seconds for DP+FE. This implies that IHEA scales very
well with a weak increasing ratio of its average computing time (i.e., 22.73/6.0
~ 3.79) when the problem size grows from 1000 to 2000 objects while this
ratio is much higher for GRASP+tabu (329.65/27.96 ~ 11.79) and DP+FE
(51695.75/2917.70 ~ 17.72). Notice also that compared to the average time
which is proportional to the Maxlter parameter, the average best solution
time (column ¢,(s)) is even much shorter (i.e., 0.47 seconds) across the whole
instance set. Given this fact, it is easy to see that the large gap between the
average t,(s) and t(s) is consumed by the algorithm only to complete its run,
but useless for improving the best solution. Finally, comparing GRASP+tabu
with DP+FE, the former outperforms the latter by achieving significantly
more best known lower bounds (74 vs. 11) with much less average computing
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Table 4

Comparative results of IHEA with two state-of-the-art algorithms on the 40 in-
stances with 1000 objects of Group II. The best known results are in italic and the

new best known results are in boldface.

INST. DP-+FE [12] GRASP++tabu [37] THEA

Best t(s) Best SR (%) RPD t(s) Best SR(%) RPD t(s)  th(s)
1000-25-1 6172407  1682.280 6172407  100.000 0.000 18.234 6172407 100.000 0.000 2.765 0.094
1000-25_-2 229833  2103.290 229941 66.000 0.008 20.448 229941 100.000 0.000 5.390 0.091
1000-25_3 172418  1919.350 172418  100.000 0.000  13.429 172418 100.000 0.000 5.892  0.050
1000-25_4 367365  2537.720 367426  100.000 0.000 16.188 367426 100.000 0.000 7.293 0.068
1000-25_5 4885569  2626.970 4885611 100.000 0.000  23.368 4885611 100.000 0.000 5.543 0.144
1000-25_6 15528 608.550 15689  100.000 0.000 5.072 15689 100.000 0.000 1.635 0.020
1000-25_7 4945741  2725.220 4945810  100.000 0.000  22.636 4945810 100.000 0.000 4.804 0.306
1000-25_-8 1709954  3762.890 1710198  100.000 0.000  44.150 1710198 100.000 0.000 7.104 0.416
1000-25-9 496315  2839.990 496315  100.000 0.000 18.619 496315 100.000 0.000 6.891  0.060
1000-25_10 1173686  3607.270 1173792  100.000 0.000  36.537 1173792 100.000 0.000 7.573 0.148
1000-50-1 5663517  3722.470 5663590  100.000 0.000  31.459 5663590 100.000 0.000 6.870 0.108
1000-50_2 180831 1450.870 180831 100.000 0.000 0.893 180831 100.000 0.000 3.692 0.045
1000-50_3 11384139  2071.250 11884283  100.000 0.000 19.753 11384283 100.000 0.000 3.338 0.088
1000-50_4 322184  1868.860 822226  100.000 0.000 13.677 322226 100.000 0.000 5.433  0.059
1000-50_5 9983477  2570.760 9984247 86.000 1.5E-4 25.315 9984247 98.000 6.0E-6 3.662 0.541
1000-50_6 4106186  3801.720 4106261 100.000 0.000  36.010 4106261 100.000 0.000 7.691 0.113
1000-50_7 10498135  2322.160 10498370 84.000 1.3E-4 20.727 10498370  100.000 0.000 3.584 0.271
1000-50_8 4981017  3826.980 4981146 20.000 0.012  72.100 4981146 99.000 1.0E-6 9.155 1.648
1000-50-9 1727727 3382.020 1727861 100.000 0.000  32.717 1727861 100.000 0.000 9.381  0.847
1000-50-10 2340590  3605.070 2340724 94.000 2.3E-4 59.074 2340724  100.000 0.000 7.416 0.163
1000-75-1 11569498  3334.210 11570056 65.000 7.6E-5 39.680 11570056  100.000 0.000 4.892 0.514
1000-75_2 1901119  3094.560 1901389  100.000 0.000  20.131 1901389 100.000 0.000 6.492 0.129
1000-75_-3 2096415  3208.980 2096485  100.000 0.000 24.713 2096485 100.000 0.000 8.742 0.107
1000-75_4 7305195  3821.020 7305321 100.000 0.000  34.156 7305321 100.000 0.000 6.846 0.119
1000-75_5 13969705  2887.190 13970240 93.000 4.0E-4 23.182 13970842 100.000 0.000 6.022 0.130
1000-75_6 12288299  3178.950 12288738  100.000 0.000  20.733 12288738 100.000 0.000 4.463 0.161
1000-75_7 1095837  2580.270 1095837  100.000 0.000  14.359 1095837 100.000 0.000 7.119 0.099
1000-75_8 5575592  3804.420 5575813  100.000 0.000  42.451 5575813 100.000 0.000 7.833 0.142
1000-75-9 695595  2171.330 695774 100.000 0.000 14.062 695774 100.000 0.000 4.624 0.126
1000-75-10 2507627  3349.440 2507677  100.000 0.000  29.338 2507677 100.000 0.000 6.863 0.074
1000-100-1 6243330  3849.500 6243494 100.000 0.000  44.646 6243494 100.000 0.000 7.018 0.116
1000-100-2 4853927  3627.050 4854086 61.000 0.001  52.601 4854086  100.000 0.000 7.092 0.193
1000-100-3 3171955  3320.520 3172022  100.000 0.000  29.177 3172022 100.000 0.000 6.391  0.096
1000-100_4 754542 1990.800 754727  100.000 0.000 14.651 154727 100.000 0.000 5.207 0.075
1000-100-5 18646607  2829.350 18646620 99.000 6.9E-7  24.273 18646620  100.000 0.000 4.070 0.289
1000-100-6 16019697  3247.810 16018298 96.000 4.2E-6  25.780 16020232 100.000 0.000 5.204 0.117
1000-100-7 12936205  3587.160 12936205  100.000 0.000  27.590 12936205 100.000 0.000 5.533 0.129
1000-100-8 6927342  3850.890 6927738  100.000 0.000  59.551 6927738 100.000 0.000 7.298 0.113
1000-100-9 3874959  3463.920 3874959  100.000 0.000 32.414 3874959 100.000 0.000 7.085 0.067
1000-100-10 1334389  2474.890 1384494 100.000 0.000 14.651 1384494 100.000 0.000 6.270 0.094
#Bests 7 - 38 30 30 - 40 40 40 - -
Avg. 5128111  2917.699 5128228 94.100 6E-4 27.964 5128291 99.925 0.000 6.005 0.204

time (178.87 seconds vs. 27306.73 seconds) across 80 instances of Group II.
This observation confirms a safe ranking of the three compared algorithms in
decreasing order of their performance: IHEA, GRASP+tabu and DP+FE.
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Table 5

Comparative results of IHEA with two state-of-the-art algorithms on the 40 in-
stances with 2000 objects of Group II. The best known results are in italic and the
new best known results are in boldface.

INST. DP-FE [12] GRASP++tabu [37] THEA

Best t(s) Best SR (%) RPD t(s) Best SR (%) RPD t(s)  th(s)
2000-25-1 5268004  57726.920 5268188  100.000 0.000  320.273 5268188 100.000 0.000 22.264 0.479
2000-25-2 13293940  51050.130 13294030  100.000 0.000  205.053 13294030 100.000 0.000 24917 2.191
2000-25_3 5500323  57419.270 5500433 56.000 4.5E-4 496.081 5500433  100.000 0.000 28.933 0.780
2000-254 14624769  46620.160 14625118  100.000 0.000  215.072 14625118 100.000 0.000 17.050 0.766
2000-25-5 5975645  57416.960 5975751 100.000 0.000  457.765 5975751 100.000 0.000  28.102  0.502
2000-25_6 4491533  56155.800 4491691 100.000 0.000  294.252 4491691 100.000 0.000 23.442 0.767
2000-25_7 6388475  57116.940 6388756  100.000 0.000  346.090 6388756 100.000 0.000 25.178 0.671
2000-25_8 11769395  52832.060 11769873  100.000 0.000  277.109 11769873 100.000 0.000 22.584 0.718
2000-25-9 10959388  54258.650 10960328  100.000 0.000  278.882 10960328 100.000 0.000 22420 0.564
2000-25-10 139233  14686.960 139236  100.000 0.000 68.070 139236 100.000 0.000 7.551  0.087
2000-50-1 7070736  52860.690 7070736 39.000 0.027 294.078 7070736  100.000 0.000 28.016 0.441
2000-50-2 12586693  57518.440 12587545  100.000 0.000 331.619 12587545 100.000 0.000 23.943 1.349
2000-50-3 27266846  48397.300 27268336  100.000 0.000  191.506 27268336 100.000 0.000 22.691 0.359
2000-50-4 17754391  57376.090 17754434 100.000 0.000  485.249 17754434 100.000 0.000 24.506  0.447
2000-50-5 16804699  57563.580 16805490 90.000 9.3E-4 923.936 16806059 100.000 0.000 32.057 0.538
2000-50-6 23075693  52613.210 23076155 50.000 5.1E-4 285.256 23076155 100.000 0.000 21.579 0.631
2000-50-7 28757657  46437.960 28759759 6.000 0.008  442.792 28759759  100.000 0.000 25.365 0.525
2000-50-8 1580242  32416.870 1580242  100.000 0.000 102.412 1580242 100.000 0.000 13.937  0.169
2000-50-9 26523637  48529.930 26523791 100.000 0.000 212.114 26523791 100.000 0.000 19.695 0.438
2000-50-10 24746249  50565.420 24747047  100.000 0.000  253.202 24747047 100.000 0.000 20.613 0.377
2000-75-1 25121327  57579.990 25121998  100.000 0.000  500.371 25121998 100.000 0.000 22.721  0.529
2000-75-2 12663927  54629.120 12664670 89.000 4.7E-4 316.231 12664670  100.000 0.000 21.584 0.401
2000-75-3 43943294  45151.420 43943994 100.000 0.000 171.362 43943994 100.000 0.000 18.723 0.763
2000-75-4 37496414  50255.520 87496613  100.000 0.000  219.561 37496613 100.000 0.000 19.901 0.434
2000-75-5 24835254  56840.030 24834948 73.000 2.1E-4 424.285 24835349 100.000 0.000 27.439 0.533
2000-75-6 45137702  44437.730 45137758  100.000 0.000  190.011 45137758 100.000 0.000 20.862 0.345
2000-75-7 25502503  57480.680 25502608  100.000 0.000  303.887 25502608 100.000 0.000 21.848 0.402
2000.-75_8 10067752  52566.820 10067892  100.000 0.000  213.795 10067892 100.000 0.000  21.560 0.333
2000-75-9 14177079 55684.210 14171994 97.000 1.6E-5 329.877 14177079 100.000 0.000 32.008 0.482
2000-75-10 7815419  48717.480 7815755 78.000 8.7E-5 201.636 7815755  100.000 0.000 20.537 1.730
2000-100-1 37929562  57195.970 37929909  100.000 0.000  270.140 37929909 100.000 0.000 21.622 0.418
2000-100-2 33665281  57844.250 33647322 95.000 8.2E-5 490.736 33665281 100.000 0.000 34.322 0.548
2000-100-3 29951509  57198.420 29952019 34.000 0.003  923.360 29952019  100.000 0.000 23.249 0.436
2000-100_4 26948234  57484.560 26949268  100.000 0.000  440.690 26949268 100.000 0.000  23.800 0.542
2000-100-5 22040523  58316.780 22041715 70.000 3.0E-4 466.252 22041715 95.000 1.1E-5 23.346 6.286
2000-100-6 18868630  56282.860 18868887  100.000 0.000  339.878 18868887 100.000 0.000 22.315 0.387
2000-100_-7 15850198  54333.570 15850597  100.000 0.000  358.472 15850597 100.000 0.000  22.555 0.399
2000-100-8 13628210  52206.350 13628967  100.000 0.000  231.923 13628967 100.000 0.000  22.250 0.356
2000-100-9 8394440  45817.310 8394562 97.000 2.2E-4 188.672 8394562  100.000 0.000 18.686 0.361
2000-100-10 4923413 38243.750 4923559 92.000 1.4E-4 124.031 4923559  100.000 0.000 15.041 0.913
#Bests 4 - 36 26 26 - 40 40 40 - -
Avg. 18088455  51695.754 18088299 89.150 0.001  329.650 18088900 99.875 0.000 22.730 0.735

3.5  Computational results on very large instances of Group II1

We now present the last experiment on the 40 very large instances of Group III
with 5000 to 6000 variables with unknown optima. In addition to their size, the
hardness of these instances is also ensured through the selection process when
they were created (see Section 3.1). To measure the solution quality obtained
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by our IHEA algorithm, we used the method proposed in [6] to calculate upper
bounds U2 p; (the current tightest bounds), which was previously used in [37]
to evaluate their algorithms. The results of DP4+PE [12] on these instances
are not reported since DP4-PE requires intolerable amount of computing time
(indeed, we did not obtain any result with a time limit of one week).

Our THEA algorithm was executed 100 times for each instance. Table 6 sum-
marizes the results: the best lower bound (column Best), the gap between the
upper bound U(%PT and the best lower bound in percentage (column GAP,
calculated by (UZpr - Best)/Best x 100), success rate (column SR), relative
percentage deviation (column RPD), the average computational time for one
trial (column t(s)) and the average best solution time aver 100 trials (column
tp(s)). The last row (Avg.) indicates the average value of each column. From
Table 6, we observe that IHEA is able to attain high quality lower bounds for
all these large and difficult instances. These lower bounds are typically very
close to the corresponding upper bounds. Indeed, the average gap between the
best lower bound and the upper bound Ug pr 18 1.359% for the whole instance
set. Moreover, IHEA achieves a success rate of 100% for 30 out of 40 instances
(75%). The average success rate across all instances is 87.675%. When we ex-
amine the computing time, the results are quite acceptable. Specifically, the
average run time for one trial is 174.075 seconds. The best solution time is
much shorter with an average value of 14.456 seconds.

4 Discussion

The computational outcomes and comparisons with state-of-the-art algorithms
presented in Section 3 demonstrated the effectiveness of the proposed THEA
approach. In this section, we provide additional information to gain more in-
sights into the “hyperplane exploration” component (Section 4.1), and further
investigate two other important ingredients of the IHEA algorithm: the vari-
able fixing strategy (Section 4.2) and the perturbation strategy (Section 4.3).
To simplify the presentation of Sections 4.1 and 4.2, we used a subset of 8 rep-
resentative instances (see Table 7-8) from the 80 benchmarks of Group II [37].
These instances cover all sizes and all densities of Group II. We denote this
subset of instances as Group ii.

4.1 Insight into the “hyperplane exploration” phase

To show the influence of the “hyperplane exploration” component on the ef-
ficiency of IHEA, we provide additional information on the 8 representative
instances of Group ii in Table 7 (complementary to Tables 4 and 5) includ-
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Table 6
Computational results of IHEA on the 40 very large instances of Group III

INST. Best  Gap(%) SR(%) RPD t(s) ty(s)
5000-25_1 23667450 2.729  100.000 0.000 130.664 1.973
5000-25_2 37914560 3.323  100.000 0.000  143.679 2.843
5000-25_3 68295820 1.718  100.000 0.000  126.904 2.668
5000-25_4 33866053 2.292  100.000 0.000  139.453 3.374
5000-25_5 9533115 5.409  100.000 0.000 111.366 3.227
5000-50_-1 45194685 2.432  100.000 0.000  144.125 2.503
5000-50-2 88355678 0.830  100.000 0.000  143.188 2.488
5000-50-3 152447303 0.376  100.000 0.000  143.813 2.960
5000-50_4 171000228 0.915  100.000 0.000  148.015 3.392
5000-50_5 1187339 6.570  100.000 0.000 61.106 0.326
5000-75-1 28170819 1.230  100.000 0.000 105.745 1.674
5000-75_2 195434758 0.406  100.000 0.000  149.977 2.834
5000-75_3 64324704 0.970 76.000 3.9E-5 141.571 36.113
5000-75_4 247348595 0.796  100.000 0.000  144.213 2.942
5000-75_5 46462750 0.478 4.000 1.0E-4 136.119 45.054
5000-100_-1 214425886 0.083  100.000 0.000  150.076 2.974
5000-100_2 18783132 0.367  100.000 0.000 76.661 1.164
5000-100_3 10784650 0.203  100.000 0.000 61.450 0.648
5000-1004 160539947 0.065 100.000 0.000  153.082 2.780
5000-100_5 33166524 0.552 67.000 9.0E-5 105.708 38.976
6000-25_1 69832542 1.788  100.000 0.000  204.230 5.621
6000-25_2 3697236 5.232  100.000 0.000  123.770 2.797
6000-25_3 79300092 1.964  100.000 0.000  246.285 3.490
6000-25_4 191531304 0.276 87.000 1.2E-5 238.917 9.093
6000-25_5 36121510 1.423  100.000 0.000  208.762 3.447
6000-50-1 194344567 1.622  100.000 0.000 214.187 4.060
6000.50_2 323753804 0.376 66.000 9.6E-5 272.235 4.864
6000-50_3 31913824 2.502  100.000 0.000  220.343 3.015
6000-50_4 225556641 0.999  100.000 0.000  198.893 5.776
6000-50-5 40931924 1.885  100.000 0.000 186.351 6.849
6000-75_1 204512250 0.999 12.000 5.2E-5 267.433 86.722
6000-75_2 42422207 1.187  100.000 0.000  182.990 2.754
6000-75_3 524508156 0.477 60.000 3.4E-3 177.873 24.377
6000_-75_4 197004931 1.083  100.000 0.000  220.513 4.100
6000-75_5 74350712 0.344  100.000 0.000  282.668 3.822
6000-100_1 292257056 0.069  100.000 0.000  219.599 4.054
6000-100_2 219791358 0.149 1.000 9.7E-4 257.679  122.758
6000-100_3 376967122 0.087 96.000 1.0E-6 266.202 46.105
6000-100-4 355609720 0.058  100.000 0.000  245.857 3.710
6000-100_5 686364195 0.100 38.000 4.2E-5 211.295 69.904
Avg. - 1.359 87.675 1.2E-4 174.075 14.456

ing the best hyperplane where ITHEA locates the best solution (column k*),
the average dimension of the initial hyperplane (Avg.ky), the hyperplane di-
mension lower bound (kzp), the hyperplane dimension upper bound (kyp)
and the average number of hyperplanes explored (Avg.k). Table 7 shows that
the average number of hyperplanes that IHEA explores is always less than 3
for these instances. There is one case where Avg.k is exactly 2 which means
TabuSearch_Engine finds improved solutions in the first hyperplane but not
in the second. For the other 7 cases, T'abuSearch_Engine sometimes discov-
ers improved solutions in the second hyperplane, which explains why their
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Table 7
Additional information of IHEA on the 8 representative instances of Group ii

INST. k* AVg.k‘o kLB kUB Avg.k
1000-25_5 880 879.010 520 881 2.904
1000-50_8 627 626.000 242 627 2.928
1000-75_5 858 857.000 490 858 2.924
1000-100-6 796 796.000 397 796 2.000
2000-25-3 929 928.010 236 931 2.896
2000-50-5 1153  1152.000 378 1153 2.969
2000-75-9 864 863.000 207 864 2.967
2000-100_2 1154  1153.000 387 1154 2.970
Avg. 907.63 906.75 357.13  908.00 2.82

Avg.k value is more than 2 but less than 3. Based on this observation, we
conclude that each iteration of the “hyperplane exploration” phase of IHEA
typically explores a very limited number of hyperplanes which contributes to
its performance. To understand why such a small number of hyperplanes is
explored, we examine the initial hyperplane (Avg.kg). It can be seen that the
initial hyperplane is always equal or very close to the best hyperplane (see
column £*). Indeed, there is 1 out of 8 cases where the initial hyperplane
is exactly the best hyperplane where the best solution is found, and 7 cases
where the initial hyperplane is only one dimension away from the best hyper-
plane. Moreover, Table 7 indicates that the dimension of the initial hyperplane
(column Awg.kg), which is always within the interval [k, kyg|, is very close
to kyg. The difference between the average values of Avg.ky and kyp is only
908.00-906.75.00=1.25. Similar observations can be made for other instances
of Group II.

4.2 Impact of the variable firing strategy

As shown in Section 2.5, for a given hyperplane, IHEA has a “high quality”
solution as its input. Before exploring the hyperplane with tabu search, we
use the density criterion to fix a number of selected items (to the value of
1) and thus generate a reduced problem for tabu search. This variable fixing
strategy is motivated by the idea that selected items with high density in a
high quality solution are strongly determined and should not be destroyed
during tabu search. To verify the usefulness of this variable fixing strategy,
we conducted an experiment to compare IHEA with a variant THEA v, r
where the variable fixing strategy is disabled (i.e., removing lines 15-17 from
Algorithm 1). As such TabuSearch_Engine explores directly the search space
of CQK P[k] instead of RCP(Vyizea, CQK P[k], ") (see Section 2.3).

We ran IHEA and IHEA y,vr 100 times to solve all instances of Group II under
the same condition as before. We divide the whole instance set into 8 classes ac-
cording to the (n,d) combination. Table 8 summarizes the results. In addition
of the average best solution value (Avg.Best), average success rate (Avg.SR)
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Table 8

Comparative results of IHEA and THEA .y on the benchmarks of Group II

INST. THEA THEA v oy £

Avg.Best Avg.SR t(s)  Avg%rv Avg.%wrv AvgBest Avg.SR t(s)
1000-25 2016960.700  100.000 5.489 0.928 0.000 2016960.700 99.400 101.332
100050 5118953.900 99.700 6.022  0.938 0.000 5118953.900 90.900  114.268
1000-75 5900793.200  100.000 6.390 0.932 0.000 5900793.200 83.100  120.730
1000-100 7476457.700 100.000 6.117  0.932 0.000 7476457.700 99.400 102.621
2000-25 7841340.400 100.000 22.244  0.964 0.000 7841340.400 99.400  591.328
2000-50 18617410.400 100.000 23.240  0.967 0.000 18617410.400 99.900 617.926
2000-75 24676371.600 100.000 22.718  0.967 0.000 24676368.000 88.600  546.975
2000-100 21220476.400 99.500 22.719  0.963 0.000 21220453.500 80.000  466.538
Avg. 11608595.538 99.900 14.367 0.949 0 11608592.225 92.587  332.715

and average total computing time (Avg.t(s)), we also list for IHEA the aver-
age percentage of fixed variable (Avg.%py ) and average percentage of wrongly
fixed variable (Avg.%wry ), where the percentage of the fixed variables is
calculated by: #fixed_variable/k x 100 and the percentage of wrongly fixed
variable is calculated by: #wrongly_fixed variable/#fixed_variable x 100. The
wrongly fixed variables are identified by comparing the fixed variables to the
best known solution reported in Tables 4 and 5. The last row (Avg.) indicates
the average value of some columns.

Table 8 shows that IHEA performs better than IHEA vy, in terms of both
average best solution value (Avg.Best) and average success rate (Avg.SR)
for 2 out of 8 instance classes. For the remaining 6 instance classes where
both algorithms achieve the same best results, IHEA always attains a higher
average success rate than THEA N,y r. A Wilcoxon signed rank test with a
significance factor of 0.05 was applied to these two groups of success rates
and the resulting p-value of 0.001602 clearly shows that IHEA is significantly
better than THEA y,yr. Moreover, when we examine the average computing
time, we find that IHEA is 23 times faster than IHEA v,y (14.376 vs 332.715
seconds). Such a drastic speed-up is achieved thanks to the fact that a large
number of variables are fixed and few of them are wrongly fixed. Indeed,
the average value of the average number of fixed variables in percentage (see
column Avg.%py) is 94.9% which means that 94.9% of the search space is
eliminated on average, and the average number of wrongly fixed variables (see
column Avg.%wry) is always 0 which means no variable is wrongly fixed for
these instances.

4.3 Impact of the perturbation strategy

IHEA uses a density based perturbation strategy to introduce a form of global
diversification for a better exploration of the solution space (Section 2.7). To
assess the impact of the adopted perturbation strategy, we conducted an ex-
periment to compare the performance of IHEA with two variants IHEA gppr
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Table 9

Comparative results of IHEA with IHEAgppr and IHEA yopr on the 80 large

instances of Group II [37]. The values in bold denote the best results of row Sum.
INST. ITHEA IHEARDPT IHEANOPT

Avg.Best Avg.SR Avg.t(s) Avg.Best Avg.SR Avg.t(s) Avg.Best Avg.SR Avg.t(s)

100025  2016960.700  100.000 5.489  2016960.700  96.200 7.649  2016958.100  78.300 0.134
100050  5118953.900  99.700 6.022 5118953.900  78.200 8.327 5118885.300  61.100 0.144
100075  5900793.200  100.000 6.390  5900793.200  98.400 9.218  5900733.000  75.700  0.149
1000_100  7476457.700  100.000 6.117  7476457.700  93.600 9.010  7476457.700  79.900 0.146
200025  7841340.400  100.000 22.244 7841340.400  89.900 31.684 7841340.400  57.900 0.569
200050  18617410.400 100.000 23.240 18617410.400 97.600 32.179 18617161.000 88.300 0.576
200075  24676371.600 100.000 22.718 24676371.600 97.500 31.554 24675823.000 81.100 0.563
2000.100  21220476.400 99.500 22.719 21220476.400 100.000 31.750 21218753.400 77.800 0.533
Aung. 11608595.538 99.900 14.367 11608595.538 93.925 20.171 11608263.988 75.012 0.352

and IHEA yopr. IHEARppr randomly removes s selected items without con- 1
sidering their densities while IHEA yopr eliminates the perturbation phase »
from IHEA. This experiment was also performed on the 80 instances of Group 3
II. As usual, each algorithm was executed 100 times on each instance. 4

Table 9 summarizes the results based on three indicators: 1) average best solu- s
tion value (Avg.Best); 2) average success rate (Avg.SR); 3) average computing
time for one trial (Avg.t(s)). The last row of the table (Avg.) indicates the 7
average of the listed values of each column. From Table 9, we observe that s
eliminating the perturbation phase from the IHEA algorithm causes a great o
deterioration of its performance in terms of both best solution value and suc- 10
cess rate. Indeed, compared to IHEA and IHEAzppr, IHEANopr achieved a
smaller average best solution (Avg.Best) value for 6 out of 8 instance classes 1
and even a smaller average success rate (Avg.SR) for all 8 classes. When com- 13
paring IHEA pppr with IHEA, one observes that, although IHEAgppr does 1
not deteriorate the best solution value, it is less stable than IHEA by achieving 15
a smaller average success rate for 7 out of 8 instance classes. A Wilcoxon signed 16
rank test with a significance factor of 0.05 was applied to compare the success 17
rates of IHEAgppr and IHEA, and the resulting p-value of 0.001602 discloses 18
that IHEAgppr is significantly worse than IHEA. Moreover, IHEAgppr re- 19
quired on average more computing time than ITHEA (20.171 seconds v.s. 14.367 2
seconds). This experiment confirms that the perturbation phase of IHEA is =«
useful and the adopted density based strategy is effective. 2

5 Conclusions 23

This paper deals with the NP-hard Quadratic Knapsack Problem which is 2
a highly useful model in practice. To approximate this hard combinatorial 25
problem, we developed an iterated “hyperplane exploration” approach mixing 2
problem reduction techniques and local optimization with tabu search. The 2
proposed approach introduces a hyperplane constraint to the original QKP 2
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model to generate a series of “interesting” hyperplane-constrained problems
whose solution space represents a small subset of the original solution space
of QKP. To further reduce the hyperplane-constrained problem, we employ
specific variable fixing rules based on item density information to fix “strongly
determined” variables. The dedicated tabu search procedure is then used to
explore the reduced hyperplane-constrained problem. Finally a perturbation
strategy is applied to help the search to escape from deep local optima.

We assessed the performance of the proposed approach and presented com-
parisons with three best performing methods on two sets of 180 well-known
benchmark instances (up to 2000 items) and a set of 40 new instances (with
5000 and 6000 items). The computational experiments showed that the pro-
posed approach competes very favorably with the state-of-the-art algorithms.
Specifically, IHEA consistently attained the known optimal solution with a
100% success rate for all 100 small-sized benchmarks (with 100 to 300 ob-
jects). For the set of 80 large benchmarks with 1000 and 2000 objects, [HEA
discovered 6 improved results (new best lower bounds) and attained the re-
maining 74 best known results. Encouraging results on 40 new very large in-
stances (with 5000 and 6000 objects) additionally confirmed the effectiveness
of our approach where the average gap between the best lower bound and the
well known upper bound UéPT is bounded by 1.359%. The experiments also
showed that the proposed approach is more computationally effective than
the existing heuristics. Furthermore, we performed additional experiments to
gain insight into the “hyperplane exploration” component of the proposed ap-
proach, and investigate the beneficial role of two key strategies of the proposed
approach: the variable fixing strategy and the perturbation strategy.

We comment that even if IHEA follows the common assumption of non-
negative profits (see Section 2.2, Proposition 1), this is not a necessary condi-
tion to apply it. Indeed, in the case of negative profits, Proposition 1 does not
hold necessarily and as such the hyperplanes containing the optimal solutions
can no more be bounded correctly. Nevertheless, IHEA can still be applied to
locate high quality solutions within a set of promising hyperplanes which can
be identified by any specific means. In this sense, the proposed IHEA approach
is general and applicable to any QKP instance even though its performance
may decrease for instances with negative profits.

For future work, there are several interesting directions that could be inves-
tigated. First, given the current IHEA algorithm, we can improve the hyper-
plane exploration (tabu search) by introducing adaptive memory techniques
based on recency and/or frequency information projection [19]. Some advanced
search frameworks like path relinking and scatter search [16] could also be
integrated to reinforce the tabu search engine. Generally, under the IHEA ap-
proach, the task of hyperplane exploration can be performed by any effective
search algorithm which can be either a heuristic or an exact solver. Second,
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it would be useful to investigate additional methods able to identify the most
“promising” hyperplanes and thus reduce the number of hyperplanes to be
explored. Finally, given that the idea of hyperplane decomposition is quite
general, it would be interesting to investigate its merit for solving other knap-
sack and related problems.
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